Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 15: 1371336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601934

RESUMO

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense, Tropical Race 4 (TR4) is a soil-borne disease, and it is devastating. At present, the biological control using antagonistic microorganisms to mitigate TR4 is one of the best strategies as a safe and green way. Yunnan has abundant and diverse microbial resources. Using the dual-culture method, the antagonistic endophytic fungi against TR4 were isolated and screened from the root nodule of Dolichos lablab. The effect of the highest antagonistic activity strain on the morphology of the TR4 mycelium was observed using the scanning electron microscope. According to morphological characteristics and sequence analysis, the strain was identified. The biocontrol effect and plant growth promotion were investigated by greenhouse pot experiment. Using the confocal laser scanning microscope and the real-time fluorescence quantitative PCR, the dynamics of TR4 infestation and the TR4 content in banana plant roots and corms would also be detected. In this study, 18 native endophytic fungi were isolated from a root nodule sample of Dolichos lablab in the mulch for banana fields in Yuxi, Yunnan Province, China. The YNF2217 strain showed a high antagonistic activity against TR4 in plate confrontation experiments, and the inhibition rate of YNF2217 is 77.63%. After TR4 culture with YNF2217 for 7 days in plate confrontation experiments, the morphology of the TR4 mycelium appeared deformed and swollen when observed under a scanning electron microscope. According to morphological characteristics and sequence analysis, the strain YNF2217 was identified as Pochonia chlamydosporia. In the greenhouse pot experiment, the biocontrol effect of YNF2217 fermentation solution on TR4 was 70.97% and 96.87% on banana plant leaves and corms, respectively. Furthermore, YNF2217 significantly promoted the growth of banana plants, such as plant height, leaf length, leaf width, leaf number, pseudostem girth, and both the aboveground and underground fresh weight. Observations of TR4 infestation dynamics in banana roots and corms, along with real-time fluorescence quantitative PCR, verified that YNF2217 inoculation could significantly reduce the TR4 content. Therefore, YNF2217 as P. chlamydosporia, which was found first time in China and reported here, is expected to be an important new fungal resource for the green control of Fusarium wilt of banana in the future.

3.
Front Microbiol ; 14: 1216018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029129

RESUMO

Introduction: Bananas are not only an important food crop for developing countries but also a major trading fruit for tropical and semitropical regions, maintaining a huge trade volume. Fusarium wilt of banana (FWB) caused by Fusarium oxysporum f. sp. cubense is becoming a serious challenge to the banana industry globally. Biological control has the potential to offer both effective and sustainable measures for this soil-borne disease. Methods: In order to explore the biocontrol effects of the biological agent Bacillus amyloliquefaciens QST713 strain on banana plants, two cultivars, Brazilian and Yunjiao No. 1, with varied resistance to FWB, were used in greenhouse pot experiments. Results: Results showed that the plant height and pseudostem diameter of banana-susceptible cultivar Brazilian increased by 11.68% and 11.94%, respectively, after QST713 application, while the plant height and pseudostem diameter of resistant cultivar Yunjiao No. 1 increased by 14.87% and 12.51%, respectively. The fresh weight of the two cultivars increased by 20.66% and 36.68%, respectively, indicating that this biological agent has potential effects on plant growth. Analysis of the rhizosphere soil microbial communities of two different cultivars of banana plants showed that TR4 infection and B. amyloliquefaciens QST713 strain application significantly affected the bacterial and fungal diversity of Yunjiao No. 1, but not in the cultivar Brazilian. In addition, TR4 infection and QST713 application changed the bacterial community composition of both banana cultivars, and the fungal community composition of Yunjiao No. 1 also changed significantly. Relevance analysis indicated that the relative richness of Bacillus and Pseudomonas in the rhizosphere of both cultivars increased significantly after QST713 application, which had a good positive correlation with plant height, pseudostem girth, aboveground fresh weight, leaf length, and leaf width. Discussion: Therefore, the outcome of this study suggests that the biological agent QST713 strain has potential application in banana production for promoting plant growth and modification of soil microbial communities, particularly in the TR4-infected field.

4.
Front Microbiol ; 14: 1211301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601384

RESUMO

Fusarium wilt of banana (FWB) caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), poses a serious problem for sustainable banana production. Biological control is one of the effective measures to control this destructive disease. High-throughput sequencing of soil microorganisms could significantly improve the efficiency and accuracy of biocontrol strain screening. In this study, the soil microbial diversity of six main banana-producing areas in Yunnan was sequenced by Illumina Miseq platform. The outcome of this study showed the genus of Chujaibacter, Bacillus, and Sphingomonas were significantly enriched in microorganism community composition. Further correlation analysis with soil pathogen (Foc TR4) content showed that Bacillus was significantly negatively correlated with pathogen content. Therefore, we isolated and identified Bacillus from the disease-suppressive soils, and obtained a B. velezensis strain YN1910. In vitro and pot experiments showed that YN1910 had a significant control effect (78.43-81.76%) on banana Fusarium wilt and had a significant growth promotion effect on banana plants.

5.
Front Microbiol ; 14: 1138580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032861

RESUMO

Introduction: Natural weed cover and a legume cover crop were examined to determine if they could impact soil fungal diversity as an indicator of soil quality in banana production. Methods: Banana in Yunnan Province, China, was grown under three treatments: conventional tillage (bare soil), natural weed cover (primarily goosegrass (Eleusine indica (L.) Gaerth)), or a cover crop (Siratro (Macroptilium atropurpureum (DC.) Urb.)). Analysis of the soil fungal communities between 2017 and 2020 was done by Illumina Miseq high-throughput sequencing. Results: Most significant effects were in the intercropping area for the treatments, whereas it was rarely observed in the furrow planted with banana. Based on the Shannon and Simpson diversity indices, soil fungal diversity in the intercropping area significantly decreased following planting banana in 2017 with all three treatments. However, both the Shannon and Simpson diversity indices showed that there were significant increases in fungal soil diversity in 2019 and 2020 with natural weed cover or Siratro compared to bare soil. At the end of the experiment, significant increases in fungal genera with Siratro compared to bare soil were observed with Mortierella, Acremonium, Plectophaerella, Metarhizium and Acrocalymma, and significant decreases were observed with Fusicolla, Myrothecium, Exserohilum, Micropsalliota and Nigrospora. Siratro resulted in higher stability of the soil fungal microbiome by increasing the modularity and the proportion of negative co-occurrences compared to bare soil. For fungal guilds, Siratro significantly increased saprotrophs_symbiotrophs in 2019 and 2020 and significantly decreased pathogens_saprotrophs in 2020 compared to bare soil. Discussion: Using Siratro as a cover crop in the intercropping area of banana helped maintain soil fungal diversity, which would be beneficial for soil health with more symbiotrophs and less pathogens in the soil. However, further research is needed to determine the long-term impact of weed or Siratro cover crop on the fungal soil ecosystem and growth of banana.

6.
Front Plant Sci ; 14: 1145837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938065

RESUMO

Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.

7.
J Fungi (Basel) ; 9(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36836322

RESUMO

Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc), is the most important constraint of the banana industry globally. In Nepal, epidemics resembling FWB have been increasingly observed on the Malbhog cultivar in the past several years. However, the disease has not been officially reported yet, and consequently, little is known about the pathogen present across the country. In this study, we characterized 13 fungal strains isolated from banana plants of the Malbhog cultivar (Silk, AAB) showing symptoms similar to FWB in banana plantations in Nepal. All of the strains were typed as belonging to the F. oxysporum and caused FWB symptoms when inoculated in the Malbhog and Cachaco (Bluggoe, ABB) cultivars. No symptoms were observed in the Williams cultivar (Cavendish, AAA). Vegetative compatibility group (VCG) analysis classified the strains as VCG 0124 or VCG 0125. PCR analyses conducted with primers specific for Foc race 1 (Foc R1) or Foc tropical race 4 (TR4) revealed that all the strains reacted positively for Foc R1 and none for TR4. Altogether, our results demonstrated that the pathogen populations causing FWB of the Malbhog cultivar in Nepal were Foc R1. This work reported, for the first time, the occurrence of FWB in Nepal. Further studies with larger Foc populations are needed to better understand disease epidemiology to design sustainable disease management strategies.

8.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35190027

RESUMO

Whether species coculture can overcome the shortcomings of crop monoculture requires additional study. Here, we show how aquatic animals (i.e. carp, crabs, and softshell turtles) benefit paddy ecosystems when cocultured with rice. Three separate field experiments and three separate mesocosm experiments were conducted. Each experiment included a rice monoculture (RM) treatment and a rice-aquatic animal (RA) coculture treatment; RA included feed addition for aquatic animals. In the field experiments, rice yield was higher with RA than with RM, and RA also produced aquatic animal yields that averaged 0.52-2.57 t ha-1. Compared to their corresponding RMs, the three RAs had significantly higher apparent nitrogen (N)-use efficiency and lower weed infestation, while soil N contents were stable over time. Dietary reconstruction analysis based on 13C and 15N showed that 16.0-50.2% of aquatic animal foods were from naturally occurring organisms in the rice fields. Stable-isotope-labeling (13C) in the field experiments indicated that the organic matter decomposition rate was greater with RA than with RM. Isotope 15N labeling in the mesocosm experiments indicated that rice used 13.0-35.1% of the aquatic animal feed-N. All these results suggest that rice-aquatic animal coculture increases food production, increases N-use efficiency, and maintains soil N content by reducing weeds and promoting decomposition and complementary N use. Our study supports the view that adding species to monocultures may enhance agroecosystem functions.


Monoculture, where only one type of crop is grown to the exclusion of any other organism, is a pillar of modern agriculture. Yet this narrow focus disregards how complex inter-species interactions can increase crop yield and biodiversity while decreasing the need for fertilizers or pesticides. For example, many farmers across Asia introduce carps, crabs, turtles or other freshwater grazers into their rice paddies. This coculture approach yields promising results but remains poorly understood. In particular, it is unclear how these animals' behaviours and biological processes benefit the ecosystem. To examine these questions, Guo, Zhao et al. conducted three separate four-year field experiments; they compared rice plots inhabited by either carp, mitten crabs or Chinese softshell turtles with fields where these organisms were not present. With animals, the rice paddies had less weeds, better crop yields and steady levels of nitrogen (a natural fertiliser) in their soil. These ecosystems could breakdown organic matter faster, use it better and had a reduced need for added fertilizer. While animal feed was provided in the areas that were studied, carp, crabs and turtles obtained up to half their food from the field itself, eating weeds, algae and pests and therefore reducing competition for the crops. This work helps to understand the importance of species interactions, showing that diversifying monocultures may boost yields and make agriculture more sustainable.


Assuntos
Agricultura , Braquiúros/fisiologia , Carpas/fisiologia , Ecossistema , Oryza , Tartarugas/fisiologia , Animais , Nitrogênio/química , Nitrogênio/metabolismo , Solo/química
9.
J Fungi (Basel) ; 8(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049986

RESUMO

Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), poses a major threat to global banana production. The tropical race 4 (TR4) variant of Foc is a highly virulent form with a large host range, and severely affects Cavendish bananas. Foc TR4 was recently observed within the Greater Mekong Subregion, after Chinese private companies expanded Cavendish production to the region. In this study, extensive surveys conducted across Laos and Vietnam show that Foc TR4 is still mainly constricted to the northern regions of these countries and is limited to Cavendish cultivation settings. In Laos, Foc TR4 is associated with large-scale Cavendish plantations owned by or involved with Chinese companies through which infected planting material could have been imported. In Vietnam, mostly small-holder Cavendish farmers and backyard gardens were affected by Foc TR4. In Vietnam, no direct link is found with Chinese growers, and it is expected the pathogen mainly spreads through local and regional movement of infected planting materials. Foc TR4 was not recorded on banana cultivars other than Cavendish. The extensively cultivated 'Pisang Awak' cultivar was solely infected by VCGs belonging to Foc race 1 and 2, with a high occurrence of VCG 0123 across Laos, and of VCG 0124/5 in Vietnam. Substantial diversity of Foc VCGs was recorded (VCGs 0123, 0124/5, 01218 and 01221) from northern to southern regions in both countries, suggesting that Fusarium wilt is well established in the region. Interviews with farmers indicated that the local knowledge of Fusarium wilt epidemiology and options for disease management was limited. Clear communication efforts on disease epidemiology and management with emphasis on biosecurity practices need to be improved in order to prevent further spread of Foc TR4 to mixed variety smallholder settings.

10.
J Fungi (Basel) ; 7(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829233

RESUMO

A range of basidiomycetes including the edible mushroom Pleurotus ostreatus (Po) can suppress plant pathogens such as Fusarium spp. With the current increase in production and consumption of Po in Uganda, the spent Po substrate (SPoS) could be an alternative to manage Fusarium wilt of banana (FWB), caused by the soil borne pathogen Fusarium oxysporum f. sp. cubense, race 1 (Foc). This study determined the potential of SPoS to inhibit Foc in vitro and in potted plants. In vitro studies confirmed suppression of Foc in pure co-culture (Po vs. Foc) assays and media amended with different concentrations (0% to 50% w/v) of un-sterilized SPoS filtrates. Foc growth in the sterile SPoS filtrate was comparable to the water control, suggesting possible roles of biotic or thermolabile components of the SPoS. To further verify the suppressive effects of SPoS, pot experiments were carried out with a resistant ('Mbwazirume', AAA) and susceptible ('Sukali Ndizi', AAB) banana cultivar using both artificially and naturally infested soils. Independent of the inoculation method, SPoS significantly reduced the severity of FWB in pot experiments. Susceptible cultivar 'Sukali Ndizi' growing in substrates amended with SPoS showed lower (1.25) corm damage (Scale 0-5) than the un-amended control (3.75). No corm damage was observed in uninoculated controls. The resistant cultivar 'Mbwazirume', showed slight (0.25) corm damage only in the Foc-inoculated plants without SPoS. These findings suggest that SPoS could be used as part of the management practices to reduce the impact of FWB.

11.
Front Microbiol ; 12: 754918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721361

RESUMO

Bacillus spp. is effective biocontrol agents for Fusarium wilt of banana (FWB), tropical race 4 (TR4). This study explores the colonization by Bacillus subtilis, Bacillus velezensis, and Bacillus amyloliquefaciens of host banana plants and elucidates the mechanism of antagonistic TR4 biocontrol. The authors selected one B. subtilis strain, three B. velezensis strains, and three B. amyloliquefaciens strains that are proven to significantly inhibit TR4 in vitro, optimized the genetic transformation conditions and explored their colonization process in banana plants. The results showed that we successfully constructed an optimized fluorescent electro-transformation system (OD600 of bacteria concentration=0.7, plasmid concentration=50ng/µl, plasmid volume=2µl, transformation voltage=1.8kV, and transformation capacitance=400Ω) of TR4-inhibitory Bacillus spp. strains. The red fluorescent protein (RFP)-labeled strains were shown to have high stability with a plasmid-retention frequency above 98%, where bacterial growth rates and TR4 inhibition are unaffected by fluorescent plasmid insertion. In vivo colonizing observation by Laser Scanning Confocal Microscopy (LSCM) and Scanning Electron Microscopy (SEM) showed that Bacillus spp. can colonize the internal cells of banana plantlets roots. Further, fluorescent observation by LSCM showed these RFP-labeled bacteria exhibit chemotaxis (chemotaxis ratio was 1.85±0.04) toward green fluorescent protein (GFP)-labeled TR4 hyphae in banana plants. We conclude that B. subtilis, B. velezensis, and B. amyloliquefaciens can successfully colonize banana plants and interact with TR4. Monitoring its dynamic interaction with TR4 and its biocontrol mechanism is under further study.

12.
J Fungi (Basel) ; 7(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34682217

RESUMO

Fusarium wilt of banana (FWB) is the main threatening factor for banana production worldwide. To explore bacterial biocontrol resources for FWB, the antagonistic effective strains were isolated from banana-producing areas in Yunnan Province, China. Two isolates (YN0904 and YN1419) displaying strong antagonism against Tropical Race 4 (TR4) were identified from a total of 813 strains of endophytic bacteria. TR4 inhibition rates of YN0904 and YN1419 were 79.6% and 81.3%, respectively. By looking at morphological, molecular, physiological and biochemical characteristics, YN0904 was identified as Bacillus amyloliquefaciens, while YN1419 was identified as B. subtillis. The control effects of YN0904 and YN1419 on TR4 in greenhouse experiments were 82.6% and 85.6%, respectively. Furthermore, YN0904 obviously promoted the growth of banana plantlets. In addition, biocontrol marker genes related to the biosynthesis of antibiotics synthesized and auxin key synthetase genes could be detected in YN0904. Surprisingly, the marker gene sboA could be exclusively detected in YN1419, while other marker genes were all absent. Molecular characterization results could provide a theoretical basis for expounding the biocontrol mechanisms of these two strains. We concluded that natively antagonistic strains derived from local banana plantations could provide new biological control resources for FWB.

13.
Mitochondrial DNA B Resour ; 6(7): 2054-2055, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34222658

RESUMO

Erionota torus (Evans, 1941) is a banana pest and is mainly distributed in Southeast Asia and the Pacific regions. The complete mitogenome of E. torus (GenBank accession number MW586888) is 15,987 bp in size, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes, and a noncoding A + T-rich region. The A + T-rich region is located between 12S rRNA and tRNAMet . The base composition of the whole E. torus mitogenome is 39.68% for A, 7.30% for G, 41.55% for T, and 11.47% for C, with a high AT content of 81.23%. The phylogeny analysis indicated that E. torus had a close relationship with Notocrypta curvifascia. The present data could contribute to the further detailed phylogeographic analysis and provide a comprehensive control strategy for this banana pest.

14.
J Fungi (Basel) ; 7(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946404

RESUMO

Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), especially Tropical Race 4 (TR4), seriously threatens banana production worldwide. There is no single effective control measure, although certain Bacillus strains secrete antibiotics as promising disease-biocontrol agents. This study identified five Bacillus strains displaying strong antibiotic activity against TR4, using a systemic assessment for presence/absence of genetic markers at genome level, and expression profiles at transcriptome level. A conventional PCR with 13 specific primer pairs detected biocontrol-related genes. An accurate, quantitative real-time PCR protocol with novel designed specific primers was developed to characterise strain-specific gene expression, that optimises strain-culturing and RNA-isolation methodologies. Six genes responsible for synthesising non-ribosomal peptide synthetase biocontrol metabolites were detected in all five strains. Three genes were involved in synthesising three Polyketide synthetase metabolites in all five strains, but the macrolactin synthase gene mln was only detected in WBN06 and YN1282-2. All five Bacillus strains have the genes dhb and bioA, essential for synthesising bacillibactin and biotin. However, the gene sboA, involved in subtilisin synthesis, is absent in all five strains. These genes' expression patterns were significantly different among these strains, suggesting different mechanisms involved in TR4 biocontrol. Results will help elucidate functional genes' biocontrol mechanisms.

15.
Mitochondrial DNA B Resour ; 5(3): 2996-2997, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-33458031

RESUMO

Basilepta fulvipes (Motschulsky, 1860) is a banana new pest and mainly distributed in Eastern Asia. The complete mitogenome of B. fulvipes (GenBank accession number MT627597) is 15,762 bp in size, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a noncoding D-loop region. The D-loop region is located between 12S rRNA and tRNAIle . The base composition of the whole B. fulvipes mitogenome is 41.66% for A, 8.89% for G, 34.32% for T and 15.12% for C, with a high AT bias of 75.98%. The present data could contribute to further detailed phylogeographic analysis and comprehensive control of this banaba new pest.

16.
Sci Rep ; 9(1): 8199, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160634

RESUMO

Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cubense, especially by tropical race 4 (Foc TR4), is threatening the global banana industry. Musa acuminata Pahang, a wild diploid banana that displays strong resistance to Foc TR4, holds great potential to understand the underlying resistance mechanisms. Microscopic examination reports that, in a wounding inoculation system, the Foc TR4 infection processes in roots of Pahang (resistant) and a triploid cultivar Brazilian (susceptible) were similar by 7 days post inoculation (dpi), but significant differences were observed in corms of both genotypes at 14 dpi. We compare transcriptomic responses in the corms of Pahang and Brazilian, and show that Pahang exhibited constitutive defense responses before Foc TR4 infection and inducible defense responses prior to Brazilian at the initial Foc TR4 infection stage. Most key enzymatic genes in the phenylalanine metabolism pathway were up-regulated in Brazilian, suggesting that lignin and phytotoxin may be triggered during later stages of Foc TR4 infection. This study unravels a few potential resistance candidate genes whose expression patterns were assessed by RT-qPCR assay and improves our understanding the defense mechanisms of Pahang response to Foc TR4.


Assuntos
Fusarium/patogenicidade , Musa/genética , Doenças das Plantas/genética , Transcriptoma , Catecol Oxidase/metabolismo , Parede Celular , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genótipo , Microscopia , Musa/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas
17.
Plant Physiol Biochem ; 141: 83-94, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31136934

RESUMO

Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases in bananas resulting in significant loss of Cavendish bananas production worldwide. Here we show the agronomic traits and the resistance of 'Guijiao 9' in the field trials from 2012 to 2017. And then we dissect and compare the transcriptome response from these two cultivars (cv. 'Guijiao 9' and cv. Williams) in an attempt to understand the molecular basis that contribute to the enhanced Foc tropical race 4 (Foc-TR4) resistance. 'Guijiao 9' is a Cavendish cultivar with strong resistance to Foc-TR4, which was reflected in a lower disease severity and incidence in glasshouse and field trails, when compared to the susceptible cultivar Williams. Gene expression profiles of 'Guijiao 9' and Williams were captured by performing RNA-Seq analysis on 16 biological samples collected over a six day period post inoculation with Foc-TR4. Transcriptional reprogramming in response to Foc-TR4 was detected in both genotypes but the response was more drastic in 'Guijiao 9' than in Williams. Specific genes involved in plant-pathogen interaction and defense signaling including MAPK, calcium, salicylic acid, jasmonic acid and ethylene pathways were analyzed and compared between 'Guijiao 9' and Williams. Genes associated with defense-related metabolites synthesis such as NB-LRR proteins, calmodulin-binding protein and phenylpropanoids biosynthesis genes were significantly up-regulated in 'Guijiao 9' resistant to Foc-TR4 infection. Taken together, this study highlights the important roles of plant hormone regulation and defense gene activation in mediating resistance in 'Guijiao 9'.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Musa/genética , Doenças das Plantas/genética , DNA Complementar/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes de Plantas , Musa/microbiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Ácido Salicílico/metabolismo , Metabolismo Secundário , Especificidade da Espécie , Transcrição Gênica , Transcriptoma , Regulação para Cima
18.
Int J Phytoremediation ; 20(7): 730-738, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29723053

RESUMO

To test the possibility that using appropriate rootstocks could improve the tolerance of watermelon to cadmium (Cd) toxicity, a greenhouse experiment was conducted to determine growth and antioxidant activities of watermelons, either nongrafted or grafted onto summer squash and winter squash. We provided nutrient solutions having four levels (0, 50, 100, and 200 µM) of cadmium to treat the plants. Shoot and root biomass reduction were significantly lower in summer squash rootstock-grafted watermelon than winter squash rootstock-grafted and nongrafted watermelons. Cadmium induced a smaller decrease in leaf area index in grafted watermelons compared with nongrafted plants. The Cd- related reductions in chlorophyll content and efficiency of photosynthesis were more severe in nongrafted watermelons compared with dose grafted onto summer squash. Cd accumulation in shoot at the highest dose (200 µM) of CdCl2 was significantly lower (19.76 mg/kg) in summer squash rootstock-grafted watermelon compared with winter squash rootstock-grafted (37.58 mg/kg) and nongrafted watermelon (72.12 mg/kg). H2O2, MDA production and electrolyte leakage of summer squash rootstock-grafted watermelon showed less increase, which was associated with a significant increase in the activities of antioxidant. The improved crop performance of grafted watermelons was attributed to their strong capacity to inhibit Cd accumulation in the aerial parts.


Assuntos
Citrullus , Biodegradação Ambiental , Cádmio , Peróxido de Hidrogênio , Raízes de Plantas
19.
Front Plant Sci ; 9: 457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686692

RESUMO

Banana is the most popular and most exported fruit and also a major food crop for millions of people around the world. Despite its importance and the presence of serious disease threats, research into this crop is limited. One of those is Panama disease or Fusarium wilt. In the previous century Fusarium wilt wiped out the "Gros Michel" based banana industry in Central America. The epidemic was eventually quenched by planting "Cavendish" bananas. However, 50 years ago the disease recurred, but now on "Cavendish" bananas. Since then the disease has spread across South-East Asia, to the Middle-East and the Indian subcontinent and leaped into Africa. Here, we report the presence of Fusarium oxysporum f.sp. cubense Tropical Race 4 (Foc TR4) in "Cavendish" plantations in Laos, Myanmar, and Vietnam. A combination of classical morphology, DNA sequencing, and phenotyping assays revealed a very close relationship between the Foc TR4 strains in the entire Greater Mekong Subregion (GMS), which is increasingly prone to intensive banana production. Analyses of single-nucleotide polymorphisms enabled us to initiate a phylogeography of Foc TR4 across three geographical areas-GMS, Indian subcontinent, and the Middle East revealing three distinct Foc TR4 sub-lineages. Collectively, our data place these new incursions in a broader agroecological context and underscore the need for awareness campaigns and the implementation of validated quarantine measures to prevent further international dissemination of Foc TR4.

20.
New Phytol ; 197(4): 1291-1299, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23311965

RESUMO

Upon herbivore attack, plants activate an indirect defense, that is, the release of a complex mixture of volatiles that attract natural enemies of the herbivore. When plants are simultaneously exposed to two herbivore species belonging to different feeding guilds, one herbivore may interfere with the indirect plant defense induced by the other herbivore. However, little is understood about the mechanisms underlying such interference. Here, we address the effect of herbivory by the phloem-feeding whitefly Bemisia tabaci on the induced indirect defense of Arabidopsis thaliana plants to Plutella xylostella caterpillars, that is, the attraction of the parasitoid wasp Diadegma semiclausum. Assays with various Arabidopsis mutants reveal that B. tabaci infestation interferes with indirect plant defense induced by P. xylostella, and that intact jasmonic acid and ethylene signaling are required for such interference caused by B. tabaci. Chemical analysis of plant volatiles showed that the composition of the blend emitted in response to the caterpillars was significantly altered by co-infestation with whiteflies. Moreover, whitefly infestation also had a considerable effect on the transcriptomic response of the plant to the caterpillars. Understanding the mechanisms underlying a plant's responses to multiple attackers will be important for the development of crop protection strategies in a multi-attacker context.


Assuntos
Arabidopsis/parasitologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Hemípteros/fisiologia , Interações Hospedeiro-Parasita , Oxilipinas/metabolismo , Transdução de Sinais , Animais , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...